Discrete Laplacian in a half?space with a periodic surface potential I: Resolvent expansions, scattering matrix, and wave operators

نویسندگان

چکیده

We present a detailed study of the scattering system given by Neumann Laplacian on discrete half-space perturbed periodic potential at boundary. derive asymptotic resolvent expansions thresholds and eigenvalues, we prove continuity matrix, establish new formulas for wave operators. Along way, our analysis puts into evidence surprising relation between some properties potential, like parity its period, behaviour integral kernel

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the scattering theory of the Laplacian with a periodic boundary condition. I. Existence of wave operators

We study spectral and scattering properties of the Laplacian H = −∆ in L2(R+) corresponding to the boundary condition ∂u ∂ν + σu = 0 for a wide class of periodic functions σ. The Floquet decomposition leads to problems on an unbounded cell which are analyzed in detail. We prove that the wave operators W±(H ,H) exist. 2000 Mathematics Subject Classification: Primary 35J10; Secondary 35J25, 35P05...

متن کامل

Resolvent and Scattering Matrix at the Maximum of the Potential

We study the microlocal structure of the resolvent of the semiclassical Schrödinger operator with short range potential at an energy which is a unique non-degenerate global maximum of the potential. We prove that it is a semiclassical Fourier integral operator quantizing the incoming and outgoing Lagrangian submanifolds associated to the fixed hyperbolic point. We then discuss two applications ...

متن کامل

A Potential Method for Body and Surface Wave Propagation in Transversely Isotropic Half- and Full-Spaces

The problem of propagation of plane wave including body and surface waves propagating in a transversely isotropic half-space with a depth-wise axis of material symmetry is investigated in details. Using the advantage of representation of displacement fields in terms of two complete scalar potential functions, the coupled equations of motion are uncoupled and reduced to two independent equations...

متن کامل

Resolvent Expansions and Trace Regularizations for Schrödinger Operators

We provide a direct approach to a study of regularized traces for long range Schrödinger operators and small time asymptotics of the heat kernel on the diagonal. The approach does not depend on multiple commutator techniques and improves upon earlier treatments by Agmon and Kannai, Melin, and the authors.

متن کامل

the study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media

امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Nachrichten

سال: 2022

ISSN: ['1522-2616', '0025-584X']

DOI: https://doi.org/10.1002/mana.201900430